Y=-16x^2+96x+6

Simple and best practice solution for Y=-16x^2+96x+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for Y=-16x^2+96x+6 equation:



=-16Y^2+96Y+6
We move all terms to the left:
-(-16Y^2+96Y+6)=0
We get rid of parentheses
16Y^2-96Y-6=0
a = 16; b = -96; c = -6;
Δ = b2-4ac
Δ = -962-4·16·(-6)
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$
$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-40\sqrt{6}}{2*16}=\frac{96-40\sqrt{6}}{32} $
$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+40\sqrt{6}}{2*16}=\frac{96+40\sqrt{6}}{32} $

See similar equations:

| 40x-10=-55 | | 3x^2+26=74 | | 10b-3=70 | | (8x-9)(6x+10=180 | | (10x-10)(5x+10)=180 | | (5x+5)(3x+15)=180 | | 2x+25=2x+24=13 | | 2.x=-16 | | 4x+12=2x+12+2x | | -28+x=19 | | -0.6x*80^2+18*80-130=0 | | B=15.25-0.06x | | 3b/2=13 | | 4^x=256^x-1 | | -0.6x^2+18x-130=0 | | -0.6x+x+18x-130=0 | | 7-3x=8x2 | | -1.2x+18=0 | | (3x+6)(4x-29)=180 | | (x-12)^2=100 | | v+18/2=0 | | x+(2x/25)=12305.64 | | X+(15+x)=255 | | X+(15+x)=250 | | -10y+9y=-9 | | 3^x+2=9^2x | | 7k=17+30 | | 42+2x=100 | | 2.5*x+x=78 | | 95=(1.08+18x)/(0.06-x) | | 2x-2/3-9x-2/5=2 | | 8=5x/3-7 |

Equations solver categories